Think-TAc-ToE: WHEN ARE PuZZLES SOLVABLE?

Susa Stonedahl \& Forrest Stonedahl
MathFest: August 5, 2011

Motivation

Co-taught a middle school math enrichment program

- Students like puzzles
- Experienced and inexperienced mathematicians are on more even ground when facing a new puzzle

Rules of Think-Tac-Toe

- In Think-Tac-Toe the puzzler tries to discover the hidden locations of X's and O's in a grid by using number clues.
- The number in each square tells you the number of X's in that square's neighborhood.
- A square's neighborhood is made up of the square itself and any squares that it shares an edge or a corner with.

2	3	2
4	5	3
3	3	2

For example...

Clues
 Solution

2	3	2
4	5	3
3	3	2

For example...

Clues
 Solution

If we look at the 4....

2	3	2
4	5	3
3	3	2

For example...

Clues

Solution

The whole neighborhood has X's

2	3	2
4	5	3
3	3	2

For example...

Clues

Solution

If we look at the 1...

2	3	2
4	5	3
3	3	2

For example...

Clues
 Solution

The neighborhood already has it's " 1 "

For example...

Clues

Solution

If we look at these 3's...

2	3	2
4	5	3
3	3	2

For example...

Clues

Solution

They each need another X.

2	3	2
4	5	3
3	3	2

For example...

Clues
 Solution

The puzzle is solved!

2	3	2
4	5	3
3	3	2

But NOT All Puzzles Are Solvable...

This puzzle could have originated as any of these four solutions, so it's not solvable.
(Puzzle creation operation is not invertible!)

2	3	2
4	5	3
3	3	2

Our Question is...

3	2
5	3
3	2

Which grid sizes are always solvable?

2	3	2
4	5	3
3	3	2

We can treat the puzzle grid as a graph

3×3 Adjacency Matrix...

$\mathrm{T}_{(1,1)}$	$\mathrm{T}_{(1,2)}$	$\mathrm{T}_{(1,3)}$
$\mathrm{T}_{(2,1)}$	$\mathrm{T}_{(2,2)}$	$\mathrm{T}_{(2,3)}$
$\mathrm{T}_{(3,1)}$	$\mathrm{T}_{(3,2)}$	$\mathrm{T}_{(3,3)}$

		1	0	1	1	O	0		
${ }^{\mathrm{T}_{(1,2)}}$	1	1	1	1	1	1	0		
$\mathrm{T}_{(1,3)}$	0	1	1	0	1	1	0	0	
$\mathrm{T}_{(2,1)}$	1	1	0	1	1	0	1		
$\mathrm{T}_{(2,2)}$	1	1	1	1	1	1	1		
$\mathrm{T}_{(2,3)}$	0	1	1	0	1	1	0		
$\mathrm{T}_{(3,1)}$	0	0	0	1	1	0	1		
$\mathrm{T}_{(3,2)}$	0	0	0	1	1	1	1		
		0	0	0	1	1	0		

T: locations in the grid \quad : corresponding adjacency matrix

3×3 Solution and Clue Vectors...

\vec{c} : clues vector (\#'s from 0 to 9)

(0's for O's and 1's for X's)

Solvability

creating puzzle...

$$
A \vec{s}=\vec{c}
$$

A :adjacency matrix
\vec{s} : solution vector
\vec{c} : clues vector

Solvability

creating puzzle...

$$
A \vec{s}=\vec{c}
$$

solving puzzle...

$$
\stackrel{\rightharpoonup}{s}=A^{-1} \stackrel{\rightharpoonup}{c}
$$

If the corresponding adjacency matrix, A, is invertible, then the puzzle is solvable!

When is the $1 \times \mathrm{N}$ Puzzle Solvable?

- Our goal is to discover when an $\mathrm{M} \times \mathrm{N}$ matrix puzzle is solvable, but let's solve a simpler problem first.

2	3	2
4	5	3
3	3	2

When is the $1 \times \mathrm{N}$ Puzzle Solvable?

When is the $1 \times \mathrm{N}$ Adjacency Matrix Invertible?

When is the $1 \times \mathrm{N}$ Adjacency Matrix Invertible?

Determinant of a $1 \times \mathrm{k}$ adjacency matrix..

Determinant of a $1 \times \mathrm{k}$ adjacency matrix..

Determinant of a $1 \times \mathrm{k}$ adjacency matrix..

The same form of a matrix, but with a different number of rows and columns

Determinant of a $1 \times \mathrm{k}$ adjacency matrix..

$A_{k} \sim A_{k-1}$
B
The same form of a matrix, but with a different number of rows and columns

Expanding again...

Expanding by the first column.

Determinant of a $1 \times \mathrm{k}$ adjacency matrix..

A_{k}
A_{k-1}
A_{k-2}
$\operatorname{det}\left(A_{k}\right)=\operatorname{det}\left(A_{k-1}\right)-\operatorname{det}\left(A_{k-2}\right)$

A little algebra...

$\operatorname{det}\left(A_{k}\right)=\operatorname{det}\left(A_{k-1}\right)-\operatorname{det}\left(A_{k-2}\right)$

2	3	2
4	5	3
3	3	2

A little algebra...

$$
\operatorname{det}\left(A_{k}\right)=\operatorname{det}\left(A_{k-1}\right)-\operatorname{det}\left(A_{k-2}\right)
$$

$$
\operatorname{det}\left(A_{k-1}\right)=\operatorname{det}\left(A_{k-2}\right)-\operatorname{det}\left(A_{k-3}\right)
$$

2	3	2
4	5	3
3	3	2

A little algebra...

$$
\operatorname{det}\left(A_{k}\right)=\operatorname{det}\left(A_{k-1}\right)-\operatorname{det}\left(A_{k-2}\right)
$$

$\operatorname{det}\left(A_{k-1}\right)=\operatorname{det}\left(A_{k-2}\right)-\operatorname{det}\left(A_{k-3}\right)$

$\operatorname{det}\left(A_{k}\right)=\operatorname{det}\left(A_{k-2}\right)-\operatorname{det}\left(A_{k-3}\right)-\operatorname{det}\left(A_{k-2}\right)$

2	3	2
4	5	3
3	3	2

A little algebra...

$$
\operatorname{det}\left(A_{k}\right)=\operatorname{det}\left(A_{k-1}\right)-\operatorname{det}\left(A_{k-2}\right)
$$

$\operatorname{det}\left(A_{k-1}\right)=\operatorname{det}\left(A_{k-2}\right)-\operatorname{det}\left(A_{k-3}\right)$
$\operatorname{det}\left(A_{k}\right)=\operatorname{det}\left(A_{k-2}\right)-\operatorname{det}\left(A_{k-3}\right)-\operatorname{det}\left(A_{k-2}\right)$

A little algebra...

$$
\operatorname{det}\left(A_{k}\right)=\operatorname{det}\left(A_{k-1}\right)-\operatorname{det}\left(A_{k-2}\right)
$$

$\operatorname{det}\left(\mathrm{A}_{\mathrm{k}-1}\right)=\operatorname{det}\left(\mathrm{A}_{\mathrm{k}-2}\right)-\operatorname{det}\left(\mathrm{A}_{\mathrm{k}-3}\right)$

$$
\operatorname{det}\left(A_{k}\right)=-\operatorname{det}\left(A_{k-3}\right)
$$

2	3	2
4	5	3
3	3	2

Proof by Strong Induction...

$$
\operatorname{det}\left(A_{k}\right)= \begin{cases}1 \times(-1)^{k+1} & \text { if } k \equiv 1(\bmod 3) \\ 0 & \text { if } k \equiv 2(\bmod 3) \\ 1 \times(-1)^{k} & \text { if } k \equiv 0(\bmod 3)\end{cases}
$$

Base cases:
$\operatorname{det}\left(\mathrm{A}_{1}\right)=1$
$\operatorname{det}\left(\mathrm{A}_{2}\right)=0$
$\operatorname{det}\left(\mathrm{A}_{3}\right)=-1$

Given:
$\operatorname{det}\left(A_{k}\right)=-\operatorname{det}\left(A_{k-3}\right)$

Lemma

$1 \times \mathrm{N}$ puzzles are solvable iff $\mathrm{N} \neq 2(\bmod 3)$

2	3	2
4	5	3
3	3	2

When is $\mathrm{M} \times \mathrm{N}$ Solvable?

Now that we've solved the $1 \times N$ case, let's solve the more general $\mathrm{M} \times \mathrm{N}$ case!

2	3	2
4	5	3
3	3	2

Is the 3×3 Solvable?

Yes, row reducing this matrix yields the identity

Looking for patterns...

The same $\quad{ }^{\mathrm{T}_{(0,1)}}\left(\begin{array}{lllllllll}1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0\end{array}\right.$
3×3 block is $\mathrm{T}_{(1,2)} \quad 1 \begin{array}{lllllllll}1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0\end{array}$ repeated

$$
\mathrm{T}_{(1,1)} \mathrm{T}_{(1,2)} \mathrm{T}_{(1,3)} \mathrm{T}_{(2,1)} \mathrm{T}_{(2,2)} \mathrm{T}_{(2,3)} \mathrm{T}_{(3,1)} \mathrm{T}_{(3,2)} \mathrm{T}_{(3,3)}
$$

2	3	2
4	5	3
3	3	2

$\mathrm{T}_{(1,1)} \mathrm{T}_{(1,2)} \mathrm{T}_{(1,3)} \mathrm{T}_{(2,1)} \mathrm{T}_{(2,2)} \mathrm{T}_{(2,3)} \mathrm{T}_{(3,1)} \mathrm{T}_{(3,2)} \mathrm{T}_{(3,3)}$											
	1			0		1	0	0		0	0
$\mathrm{T}_{(1,2)}$	1		1	1		1	1				0
$\mathrm{T}_{(1,3)}$	0		1	1		1	1	0		0	0
$\mathrm{T}_{(2,1)}$	1			0		1	0				0
$\mathrm{T}_{(2,2}$	1			1		1					1
$\mathrm{T}_{(2,3)}$	0			1		1	1	0		1	1
	0			0		1	0				0
$\mathrm{T}_{(1)}$				0		1					1
$\mathrm{T}_{(3,3)}$			0	0		1	1	0			

The blocks are in fact the 1×3 A matrix

$\mathrm{T}_{(3,1)} \mathrm{T}_{(3,2)} \mathrm{T}^{\text {a }}$			
$\mathrm{T}_{(1,2)}$	1×3	11×3	OO's 0
$\mathrm{T}_{(1,3)}$	1	01	000
$\mathrm{T}_{(2,1)}$	0	110	110
${ }^{T}(2,2)$	11×3	11×3	1×3
$\mathrm{T}_{(2,3)}$	011	011	011
	0	110	110
$\mathrm{T}_{(3,2)}$	0 O's 0	11×3	1×3
	0	011	

The blocks are in fact the 1×3 A matrix

Upper row and $\mathrm{T}_{(1,1)} \mathrm{T}_{(1,2)} \mathrm{T}_{(1,3)} \mathrm{T}_{(2,1)} \mathrm{T}_{(2,2)} \mathrm{T}_{(2,3)} \mathrm{T}_{(3,1)} \mathrm{T}_{(3,2)} \mathrm{T}_{(3,3)}$ how cells relate to each other

Middle row

The blocks are in fact the 1×3 A matrix

And the $1 \times \mathrm{N}$ blocks for an $\mathrm{M} \times \mathrm{N}$...

The $M \times N$ can be row reduced like this if the $1 \times M$ can be row reduced... $[\mathrm{M} \neq 2(\bmod 3)]$

Each $1 \times N$ can be row reduced if $N \neq 2(\bmod 3)$

End of the Proof

So any $\mathrm{M} \times \mathrm{N}$ puzzle is solvable if the $1 \times \mathrm{N}$ and $1 \times M$ versions are solvable.

By our lemma, this is true whenever $N \neq 2(\bmod 3)$ and $M \neq 2(\bmod 3)$

QED

2	3	2
4	5	3
3	3	2

Open Problems / Future Work

- Alternative lattice structures?
- Alternative neighborhoods:

- e.g. don't count yourself

- Can we characterize when a puzzle is uniquely solvable when played on an arbitrary graph?

Take Think-Tac-Toe with you!

- Give the puzzles a try - they're fun!
- Give them to students
- Solve an open question from the previous slide
- Develop a new variation
- Something completely different
- And tell us about it - we'd love to hear from you!
http://www.stonedahl.com/thinktactoe/

QUESTIONS?

Extra slides follow

2	3	2
4	5	3
3	3	2

Creating Puzzle...

- Starting with the grid of X's and O's

3	2
5	3
3	2

2	3	2
4	5	3
3	3	2

Creating Puzzle...

- How many X's are in the neighborhood?

2	3	2
4	5	3
3	3	2

Creating Puzzle...

3	2
5	3
3	2

3			

2	3	2
4	5	3
3	3	2

Creating Puzzle...

- How many X's are in this neighborhood?

2	3	2
4	5	3
3	3	2

Creating Puzzle...

2	3	2
4	5	3
3	3	2

Creating Puzzle...

- And this neighborhood?

3	3		
	$?$		

2	3	2
4	5	3
3	3	2

Creating Puzzle...

2	3	2
4	5	3
3	3	2

Creating Puzzle...

- So it's easy to create the puzzle,

but the fun part is solving it...

2	3	2
4	5	3
3	3	2

Counter example for $2 \bmod (3)$

Given any NxM grid where $\mathrm{N}=2 \bmod (3)$, it is possible to fill the squares with x 's and o's such that the clues are all 1's in at least two different ways as follows.

2	3	2
4	5	3
3	3	2

Using Expansion by Minors

For example, for a 3×3 matrix

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
$$

(from Wolfram MathWorld)

2	3	2
4	5	3
3	3	2

