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Susa Stonedahl & Forrest Stonedahl 

MathFest:  August 5, 2011 

THINK-TAC-TOE:  WHEN ARE PUZZLES 

SOLVABLE? 
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Motivation 

Co-taught a middle school math enrichment program 

• Students like puzzles 

• Experienced and inexperienced mathematicians are on 
more even ground when facing a new puzzle 
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Rules of Think-Tac-Toe 

• In Think-Tac-Toe the puzzler tries to discover the 
hidden locations of X’s and O’s in a grid by using 
number clues. 

 

• The number in each square tells you the number 
of X’s in that square’s neighborhood. 
–   A square’s neighborhood is made up of the square 

itself and any squares that it shares an edge or a 
corner with. 
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For example… 
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For example… 

 

 

 

 

 

 

 

  If we look at the 4…. 
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For example… 

 

 

 

 

 

 

 

  The whole neighborhood has X’s 
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For example… 

 

 

 

 

 

 

 

  If we look at the 1… 
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For example… 

 

 

 

 

 

 

 

  The neighborhood already has it’s “1” 
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For example… 

 

 

 

 

 

 

 

  If we look at these 3’s… 
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For example… 

 

 

 

 

 

 

 

  They each need another X. 
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For example… 

 

 

 

 

 

 

 

  The puzzle is solved! 
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But NOT All Puzzles Are Solvable… 

 

 

 This puzzle could have originated as any of these 
four solutions, so it’s not solvable. 

(Puzzle creation operation is not invertible!) 
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Our Question is… 

Which grid sizes are always solvable? 
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We can treat the puzzle grid as a graph 
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3×3 Adjacency Matrix… 

  

A:  corresponding adjacency matrix T: locations in the grid 
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3×3 Solution and Clue Vectors… 

  

s)X'for  s1' and sO'for  s(0'

ector solution v :              s


9)  to0 from s'(# vector clues :c


clues solution 
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Solvability 

   

 

 

 

 

 

 

 

csA



ectorsolution v :s



 vectorclues :c


matrixadjacency  :A
creating puzzle… 



18 

Solvability 

   
 
 
 
 
 
 
 

 
• If the corresponding adjacency matrix, A, is invertible, then 

the puzzle is solvable! 

 

csA




cAs
 1

ectorsolution v :s


 vectorclues :c


matrixadjacency  :A
creating puzzle… 

solving puzzle… 
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When is the 1×N Puzzle Solvable? 

• Our goal is to discover when an M×N matrix 
puzzle is solvable, but let’s solve a simpler 
problem first. 
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When is the 1×N Puzzle Solvable? 
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When is the 1×N Adjacency Matrix Invertible? 
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When is the 1×N Adjacency Matrix Invertible? 

When is the determinant non-zero? 
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Determinant of a 1×k adjacency matrix.. 



24 

Determinant of a 1×k adjacency matrix.. 
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Determinant of a 1×k adjacency matrix.. 

The same form of a matrix, but with a 
different number of rows and columns 
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Determinant of a 1×k adjacency matrix.. 

The same form of a matrix, but with a 
different number of rows and columns 

Ak Ak-1 B 
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Expanding again… 

Expanding by the first column. 

B Ak-2 
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Determinant of a 1×k adjacency matrix.. 

Ak Ak-1 

det(Ak)=det(Ak-1)-det(Ak-2) 

Ak-2 
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A little algebra… 

det(Ak)=det(Ak-1)-det(Ak-2) 
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A little algebra… 

det(Ak)=det(Ak-1)-det(Ak-2) 

det(Ak-1)=det(Ak-2)-det(Ak-3) 
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det(Ak-1)=det(Ak-2)-det(Ak-3) 

det(Ak)=det(Ak-1)-det(Ak-2) 

A little algebra… 

det(Ak)=det(Ak-2)-det(Ak-3)-det(Ak-2) 
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det(Ak-1)=det(Ak-2)-det(Ak-3) 

det(Ak)=det(Ak-1)-det(Ak-2) 

A little algebra… 

det(Ak)=det(Ak-2)-det(Ak-3)-det(Ak-2) 
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det(Ak-1)=det(Ak-2)-det(Ak-3) 

det(Ak)=det(Ak-1)-det(Ak-2) 

A little algebra… 

det(Ak)=-det(Ak-3) 
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Proof by Strong Induction… 

det(A1)=1 

det(A2)=0 

det(Ak)=-det(Ak-3) 

det(A3)=-1 

Base cases: Given: 

det(Ak)= 
1×(-1)k+1   if k ≡ 1 (mod 3) 
0                if k ≡ 2 (mod 3) 
1×(-1)k         if k ≡ 0 (mod 3) 
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Lemma 

1×N puzzles are solvable iff N ≠ 2 (mod 3) 
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When is M×N Solvable? 

Now that we’ve solved the 1×N case,  

let’s solve the more general M×N case! 
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Is the 3×3 Solvable? 

Yes, row 
reducing 
this matrix 
yields the 
identity 
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Looking for patterns… 

The same 
3×3 block is 
repeated 
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The blocks are in fact the 1×3 A matrix 
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The blocks are in fact the 1×3 A matrix 

Upper row and 
how cells relate 
to each other 

 
Middle row 

 

 

Bottom row  
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The blocks are in fact the 1×3 A matrix 

Upper row to 
middle row 
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And the 1×N blocks for an M×N… 
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The M×N can be row reduced like this if the 1×M can 
be row reduced… *M ≠2 (mod 3)+ 
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Each 1×N can be row reduced if N ≠2 (mod 3) 



45 

End of the Proof 

So any M×N puzzle is solvable if the 1×N 
and 1×M versions are solvable. 
 
By our lemma,  this is true whenever 
N ≠2 (mod 3) and M ≠2 (mod 3) 
 
          QED  
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Open Problems / Future Work 

 Alternative lattice structures? 
 

 Alternative neighborhoods: 

 e.g. don't count yourself 
 

 Can we characterize when a puzzle is uniquely 
solvable when played on an arbitrary graph? 

1 

2 

2 

3 
2 

3 
2 
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Take Think-Tac-Toe with you! 

 Give the puzzles a try – they're fun! 

 Give them to students 

 Solve an open question from the previous slide 

 Develop a new variation 

 Something completely different 

 

 And tell us about it – we'd love to hear from you! 

http://www.stonedahl.com/thinktactoe/ 

http://www.stonedahl.com/thinktactoe/
http://www.stonedahl.com/thinktactoe/
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QUESTIONS? 
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Extra slides follow 
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Creating Puzzle… 

• Starting with the grid of X’s and O’s 
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Creating Puzzle… 

• How many X’s are in the neighborhood? 
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Creating Puzzle… 
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Creating Puzzle… 

• How many X’s are in this neighborhood? 
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Creating Puzzle… 
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Creating Puzzle… 

• And this neighborhood? 
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Creating Puzzle… 
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Creating Puzzle… 

• So it’s easy to create the puzzle, 

 

 

 

 

 

 

       but the fun part is solving it… 
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Counter example for 2 mod(3) 

Given any NxM grid where N=2 mod(3), it is possible to fill the squares 
with x’s and o’s such that the clues are all 1’s in at least two different 
ways as follows. 
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Using Expansion by Minors 

(from Wolfram MathWorld) 


