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Evolution (a non-biologist's guide...)
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Evolution (a non-biologist's guide...)

● There is a population of creatures
● Creatures reproduce

– Children are like parents, but different.

● Creatures die
– Some animals are more likely to 

survive and reproduce.  They are 
considered “more fit”.

● Over time the population will resemble 
the successes more than the failures



 

Evolution (a non-biologist's guide...)

Key ideas:

● Variation
– Mutation & recombination

– Allows new favorable (or unfavorable) 
features to appear in children.

● Selection
– Causes the population to adapt to its 

environment.



 

Genetics (a non-biologist's guide...)

● Gene: basic hereditary unit (information)

● Chromosome: sequence of genes
● Genotype: chromosome-level genetic 

information about a creature 
– (e.g. genes that influence growth-rate)

● Phenotype: a creature's actual traits
– (e.g. short, tall, or blue-eyed).

● The mapping between genotype and 
phenotype is often very complex, 
involving cell development, etc.



 

Harnessing Evolution/Genetics

● Selective breeding
● More recently, genetic engineering

Pekingese
(thankfully not my dogs)

Siamese 
(my cat)

Wolf
(just for comparison)

image credits: cat - Susa Stonedahl (2007), dogs & wolf - public domain

Siamese
(my cat)



 

A key insight

Evolution is a powerful “problem-solving 
technique”...

We can apply this nature-inspired approach 
to solve all sorts of problems, by simulating 

evolution in a computer algorithm.



Cue Bryan's commentary on the Cue Bryan's commentary on the 
“hype” around genetic algorithms...“hype” around genetic algorithms...

Genetic AlgorithmsGenetic Algorithms
John Holland, 1975John Holland, 1975



 

Evolutionary Algorithms

● How can we simulate evolution on the 
computer to solve problems?

● Virtual population of “candidate” 
solutions.

● Some form of reproduction, to create 
new different candidates from the 
existing ones (for variation)

● Some way of measuring the “fitness” of 
a candidate (for selection)



 

Genetic Algorithm Ingredients

● an encoding for candidate solutions
● an initial population
● “fitness” function

– for phenotype selection

● genetic operators 
– for genotype variation

● reproduction model
– to put it all together



 

GA schematic

● Start with random population
● Loop until “good enough” solution found

– Evaluate fitness on each individual

– Choose parents from this population, 
preferentially selecting “fitter” ones

– Create children from the chosen parents
● Using sexual & asexual reproduction, 

and some amount of mutation

– Replace (at least part of) the old 
population with these children



 

Example: elephant bath time

Photo credit: Susa Stonedahl (2008)

Name 9:00 9:30 10:00 10:30 11:00

Allie X

Bubs X

Candy X

Dumbo X

Elle X

One candidate schedule.

10000 01000 10000 00010 01000
Ally  Bubs  Candy Dumbo Elle

One possible encoding for this schedule.

(Phenotype)

(Genotype)



 

Example: elephant bath time

Name 9:00 9:30 10:00 10:30 11:00

Allie X

Bubs X

Candy X

Dumbo X

Elle X

10000 01000 10000 00010 01000
Ally  Bubs  Candy Dumbo Elle

Q: Does every genotype map to a sensible phenotype?

Q: What other encodings could we choose?

Q: And is every phenotype representable?



 

Allie & Candy, then Bubs & Elle, & Dumbo alone

Allie & Dumbo, then Bubs alone, & Candy & Elle

● Bit-string encoding for candidate solutions

= 1000001000100000001001000 

= 1000000100000011000000001

 =  = 

Genotype Representations

● (alternative integer encoding)
– <AliceTime,BubsTime,CandyTime,DumboTime,...>

– <1, 3, 1, 2, 4>



 

Initial Population
Population

= 1000001000100000001001000 

= 1000000100000011000000001

● Start with randomly 
generated genotypes

● Population size 
usually at least 50, 
could be 1000s

● PopSize is a GA 
parameter to vary.

= 0110101000110100001010000

etc...



 

Fitness Function

Population

 

How good is each bath schedule?

Simple function: how quickly do all of the 
elephants get bathed?

f (      ) = fair      = 0.7

f (      ) = poor    = 0.2

Phenotypes

● How good is a given bath schedule?
– simple = efficiency – penalty for constraints

– complex = also consider P(conflict) given 
elephant personality matrix + bonus for elephants 
bathing with friends



 

Fitness-proportional selection

fitness=0.7
fitness=0.2

fitness=0.1

fitness=0.6

a.k.a.  “roulette selection”

fitness=0.4

Choose individuals 
for reproduction 
with probability 
proportional to 

fitness.



 

Potential Issues

● Premature population convergence
– diversity is important!

● Loss of “selection pressure”.
– At the end of the run, e.g. 99 isn't much 

more likely to be selected than 98...

● Affected by function transposition
– f(x) = 2 - (# of errors) or 100 - (# of errors)

● Windowing & scaling can help
– e.g. fitness relative to worst-in-population



 

Rank & tournament selection

fitness=0.7
fitness=0.2

fitness=0.1

fitness=0.6

fitness=0.4

Rank order:

1    2     3    4    5 

Tournament: sample k at random from the 
population, and select the best.

Requires sorting 
(but usually running 
time is dominated by 
fitness evaluation.)

Doesn't 
need global 
information!

e.g. Best of (      ,        ,       )



 

Recombination operators

1000001000100000001001000 =

1000000100000011000000001 =
1-

po
in

t
cr

os
so

ve
r

1000001000100011000000001 =

1000000100000000001001000 =

● Variants: 2-point, n-point, uniform
● Crossover is a hallmark of GAs
● Intuition: combine building blocks

– BUT, does the representation suit well?



 

Mutation operators

M
ut

at
io

n 1000001000100000001001000 =

1000000000100010001001000 =

● Per-bit mutation
– For each bit, P(flip) = k

● Common mutation rates: 
– 1 / (2L) where L = bit string length

– Sometimes fixed at < 1%

● Source of “new” information in the GA.



 

“The Next Generation”

Generation T Generation T+1

cloning -mutation

cloning +mutation

crossover

Lather, rinse, and repeat until satisfied...



 

Population-replacement models

● Generational (classic, simple GA)
– replace everyone

● Generational gap model
– Replace X% of population

● Steady-state model
– Choose someone to remove

– Create one individual to add

● “Elitism”
– Guarantee the best Y% will survive.



 

Example 2: NQueens

Photo credit: public domain

3, 2, 7, 5, 2, 4, 1, 1

Genotype
the encoding operated on by mutation and inheritance 

Phenotype
the “real” thing, (ideally) operated on by the fitness function

How else could 
we encode the 
genotype for 
chess positions?

This slide adapted from Bryan Pardo, EECS 349 Fall 2007



 

Example 3: Decision Trees

Genotype representation: 
<V

1
,V

2
,V

3
,V

4
,V

5
,V

6
,V

7
>

Where each V
i
 =    

   0 if the node is a FALSE leaf
   1 if the node is a TRUE leaf
   K for splitting on the (K-1)st  attribute.

Example Attribute Set: {IsSmoker, Exercises}

What is the phenotype for: A)  <0,2,3,1,0,2,1> ?
                                         B)  <2,2,2,2,2,2,2> ?

Question: What about the bottom tree layer (V
4
...V

7
)?



 

More Genotype Representations

● Real-valued <3.729, 0.21, 11.9…>
– Gaussian mutation

● Permutation-based
– swapping mutations

– permutation crossover

● Nonlinear
– Trees, 2D arrays, graphs

Photo credit: http://www.swissarmy.com/

http://www.swissarmy.com/


 

Fitness landscapes

Image credit: Susa Stonedahl (2009)

Usually very high-dimensional, not 2D.



 

First, a quick review...

--continuing from Friday--



 

Review:GA Ingredients

● an encoding for candidate solutions
● an initial population
● “fitness” function

– for phenotype selection

● genetic operators 
– for genotype variation

● reproduction model
– to put it all together



 

Tennis Predictor Example

● Outlook = {Sunny, Overcast, Rain}
● Wind = {Weak, Strong}
● Given 100 training examples like:

– Sunny, Strong, YES

– Rain, Weak, NO

● Should you play tennis?
● How can we design a GA to learn the 

PlaysTennis concept?



 

Representing simple rules

    _ _ _   _ _     _ _ 
   Outlook   Wind  PlaysTennis

● If (Outlook=X or Y or Z) AND Wind=(A or B) 
Then PlaysTennis = YES or NO.

● Outlook = {Sunny, Overcast, Rainy}

● Wind = {Weak, Strong}

● Classification: PlaysTennis = {YES, NO}

● What does 011 01 01 mean?

● What does 100 11 10 mean?

● What does 000 00 00 mean?



 

Review: GA Ingredients

● an encoding for candidate solutions
● an initial population
● “fitness” function

– for phenotype selection

● genetic operators 
– for genotype variation

● reproduction model
– to put it all together

DONE

Random bit strings will do.
Try PopSize=200...

Discuss!



 

Fitness & Selection

● One possibility:
– Fitness F = % correct on training set

● Select who will reproduce using:
– Tournament selection

● Look at 3 random individuals and 
select the best.



 

Genetic Operators

● 2-point crossover

0110101  (don't play in non-sunny strong wind)

1001110  (do play when sunny, in any wind)

0111101 (don't play when non-sunny in any wind)

1000110  (do play in sunny strong wind)

● Per-bit mutation, perhaps rate = 1%

–  1% chance of flipping each bit in the  
children.

Parents

Children



 

Review: GA Ingredients

● an encoding for candidate solutions
● an initial population
● “fitness” function

– for phenotype selection

● genetic operators 
– for genotype variation

● reproduction model
– to put it all together

DONE

Random bit strings will do.

F = training set score.
Tournament selection.

2-pt crossover 
& mutation

Generational



 

Review: GA schematic

● Start with random population
● Loop until “good enough” solution found

– Evaluate fitness on each individual

– Choose parents from this population, 
preferentially selecting “fitter” ones

– Create children from the chosen parents
● Using sexual & asexual reproduction, 

and some amount of mutation

– Replace (at least part of) the old 
population with these children



 

A leading question...

If genetic algorithms are “evolving” solutions, 
that sounds really flexible... 

Are there any optimization problems that 
GAs aren't good at solving?



 

“No Free Lunch” Theorem

● All search algorithms are biased.

– If they perform better on one 
function, it is at the cost of 
performing worse on another.

● No search algorithm is any better 
than random search, across the 
set of all fitness functions.

● (I'm glossing over details...)

Image credit: http://www.townofrosendale.com/images/lunch_sign.jpg

NFL due to: 
Wolpert & 
Macready 

(1997)

http://www.townofrosendale.com/images/lunch_sign.jpg


 

Before applying a GA?

● Is there a domain-specific approach 
you could try?

– GA is a “black box” optimizer

– Can incorporate domain-specific 
operators into the GA as well...

● Do greedy/local algorithms fail?
– Do they get stuck on local optima?

● Think hard about search space 
representation!



 

Thoughts on using GAs

● The chromosomal representation 
should encourage recombination of 
useful “building blocks.”  Can the 
solution be built from subcomponents?

● The fitness function must provide 
sufficient search gradient.  
(Won't find a “needle in a haystack”.)

● Biological evolution is not really an 
“optimization” process. Rather, it is a 
complex adaptive system.  This can 
also be helpful for thinking about GAs.



 

GAs and speed

● GAs are often slow
– (in their defense, 

 the problems 
are often pretty
challenging.)

● One response: parallelization
– island-migration models (“demes”)

– fine-grained parallelization

Photo credit: public domain



 

“Evolutionary Computation”

● GAs fall into a larger family of 
evolutionary algorithms, including

– Genetic Programming

– Evolutionary Strategies

– Evolutionary Programming

– EDAs, DE, GE, Harmony Search...

● Artificial life (“Alife”)
– Simulating (or creating?) virtual life

Coming up!



 

GA Demo

1st  place prize
“Art of Evolution” Exhibit

February 12, 2009



 

(Switch Slides)

to Genetic Programming



 

A few fun topics

Photo credit: public domain



 

Interactive GAs

● Require human interaction & feedback 
for the fitness function

● Can be used to evolve art, music...
● Example: online banner ads

– Try different combinations of fonts, 
background/foreground colors, 
sizes, accompanying photos, etc.

Example artwork created by an IGA.  Image credit: kandid.sourceforge.net



 

Coevolution

● Consider two populations, each 
evaluating fitness based on the other

Example:
● 1 population of parallel

 sorting networks 
● 1 population of 

“input sequences” 

This figure courtesy of:
Hillis, W.D. (1990) 
“Coevolving parasites...”



 

Learning Classifier Systems

● evolve a population of rules 
– rules can trigger other rules based on 

message passing

● the whole population = the classifier
● use “credit assignment” to reward 

useful rules with good fitness

● (combines GAs with reinforcement 
learning)



 

In conclusion...

● GAs are fun...
– So you should do your homework!

● Evolutionary algorithms can evolve 
creative and unexpected solutions to 
difficult problems.

● But you only get intelligence out, if you 
put some intelligence in!

– well-designed problem representation

– fitness function

– appropriate parameter settings
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