

Genetic AlgorithmsGenetic Algorithms

Forrest Stonedahl

EECS 349: Machine Learning

October 16, 2009

Evolution (a non-biologist's guide...)

(image credits: public domain)

Evolution (a non-biologist's guide...)

● There is a population of creatures
● Creatures reproduce

– Children are like parents, but different.

● Creatures die
– Some animals are more likely to

survive and reproduce. They are
considered “more fit”.

● Over time the population will resemble
the successes more than the failures

Evolution (a non-biologist's guide...)

Key ideas:

● Variation
– Mutation & recombination

– Allows new favorable (or unfavorable)
features to appear in children.

● Selection
– Causes the population to adapt to its

environment.

Genetics (a non-biologist's guide...)

● Gene: basic hereditary unit (information)

● Chromosome: sequence of genes
● Genotype: chromosome-level genetic

information about a creature
– (e.g. genes that influence growth-rate)

● Phenotype: a creature's actual traits
– (e.g. short, tall, or blue-eyed).

● The mapping between genotype and
phenotype is often very complex,
involving cell development, etc.

Harnessing Evolution/Genetics

● Selective breeding
● More recently, genetic engineering

Pekingese
(thankfully not my dogs)

Siamese
(my cat)

Wolf
(just for comparison)

image credits: cat - Susa Stonedahl (2007), dogs & wolf - public domain

Siamese
(my cat)

A key insight

Evolution is a powerful “problem-solving
technique”...

We can apply this nature-inspired approach
to solve all sorts of problems, by simulating

evolution in a computer algorithm.

Cue Bryan's commentary on the Cue Bryan's commentary on the
“hype” around genetic algorithms...“hype” around genetic algorithms...

Genetic AlgorithmsGenetic Algorithms
John Holland, 1975John Holland, 1975

Evolutionary Algorithms

● How can we simulate evolution on the
computer to solve problems?

● Virtual population of “candidate”
solutions.

● Some form of reproduction, to create
new different candidates from the
existing ones (for variation)

● Some way of measuring the “fitness” of
a candidate (for selection)

Genetic Algorithm Ingredients

● an encoding for candidate solutions
● an initial population
● “fitness” function

– for phenotype selection

● genetic operators
– for genotype variation

● reproduction model
– to put it all together

GA schematic

● Start with random population
● Loop until “good enough” solution found

– Evaluate fitness on each individual

– Choose parents from this population,
preferentially selecting “fitter” ones

– Create children from the chosen parents
● Using sexual & asexual reproduction,

and some amount of mutation

– Replace (at least part of) the old
population with these children

Example: elephant bath time

Photo credit: Susa Stonedahl (2008)

Name 9:00 9:30 10:00 10:30 11:00

Allie X

Bubs X

Candy X

Dumbo X

Elle X

One candidate schedule.

10000 01000 10000 00010 01000
Ally Bubs Candy Dumbo Elle

One possible encoding for this schedule.

(Phenotype)

(Genotype)

Example: elephant bath time

Name 9:00 9:30 10:00 10:30 11:00

Allie X

Bubs X

Candy X

Dumbo X

Elle X

10000 01000 10000 00010 01000
Ally Bubs Candy Dumbo Elle

Q: Does every genotype map to a sensible phenotype?

Q: What other encodings could we choose?

Q: And is every phenotype representable?

Allie & Candy, then Bubs & Elle, & Dumbo alone

Allie & Dumbo, then Bubs alone, & Candy & Elle

● Bit-string encoding for candidate solutions

= 1000001000100000001001000

= 1000000100000011000000001

 = =

Genotype Representations

● (alternative integer encoding)
– <AliceTime,BubsTime,CandyTime,DumboTime,...>

– <1, 3, 1, 2, 4>

Initial Population
Population

= 1000001000100000001001000

= 1000000100000011000000001

● Start with randomly
generated genotypes

● Population size
usually at least 50,
could be 1000s

● PopSize is a GA
parameter to vary.

= 0110101000110100001010000

etc...

Fitness Function

Population

How good is each bath schedule?

Simple function: how quickly do all of the
elephants get bathed?

f () = fair = 0.7

f () = poor = 0.2

Phenotypes

● How good is a given bath schedule?
– simple = efficiency – penalty for constraints

– complex = also consider P(conflict) given
elephant personality matrix + bonus for elephants
bathing with friends

Fitness-proportional selection

fitness=0.7
fitness=0.2

fitness=0.1

fitness=0.6

a.k.a. “roulette selection”

fitness=0.4

Choose individuals
for reproduction
with probability
proportional to

fitness.

Potential Issues

● Premature population convergence
– diversity is important!

● Loss of “selection pressure”.
– At the end of the run, e.g. 99 isn't much

more likely to be selected than 98...

● Affected by function transposition
– f(x) = 2 - (# of errors) or 100 - (# of errors)

● Windowing & scaling can help
– e.g. fitness relative to worst-in-population

Rank & tournament selection

fitness=0.7
fitness=0.2

fitness=0.1

fitness=0.6

fitness=0.4

Rank order:

1 2 3 4 5

Tournament: sample k at random from the
population, and select the best.

Requires sorting
(but usually running
time is dominated by
fitness evaluation.)

Doesn't
need global
information!

e.g. Best of (, ,)

Recombination operators

1000001000100000001001000 =

1000000100000011000000001 =
1-

po
in

t
cr

os
so

ve
r

1000001000100011000000001 =

1000000100000000001001000 =

● Variants: 2-point, n-point, uniform
● Crossover is a hallmark of GAs
● Intuition: combine building blocks

– BUT, does the representation suit well?

Mutation operators

M
ut

at
io

n 1000001000100000001001000 =

1000000000100010001001000 =

● Per-bit mutation
– For each bit, P(flip) = k

● Common mutation rates:
– 1 / (2L) where L = bit string length

– Sometimes fixed at < 1%

● Source of “new” information in the GA.

“The Next Generation”

Generation T Generation T+1

cloning -mutation

cloning +mutation

crossover

Lather, rinse, and repeat until satisfied...

Population-replacement models

● Generational (classic, simple GA)
– replace everyone

● Generational gap model
– Replace X% of population

● Steady-state model
– Choose someone to remove

– Create one individual to add

● “Elitism”
– Guarantee the best Y% will survive.

Example 2: NQueens

Photo credit: public domain

3, 2, 7, 5, 2, 4, 1, 1

Genotype
the encoding operated on by mutation and inheritance

Phenotype
the “real” thing, (ideally) operated on by the fitness function

How else could
we encode the
genotype for
chess positions?

This slide adapted from Bryan Pardo, EECS 349 Fall 2007

Example 3: Decision Trees

Genotype representation:
<V

1
,V

2
,V

3
,V

4
,V

5
,V

6
,V

7
>

Where each V
i
 =

 0 if the node is a FALSE leaf
 1 if the node is a TRUE leaf
 K for splitting on the (K-1)st attribute.

Example Attribute Set: {IsSmoker, Exercises}

What is the phenotype for: A) <0,2,3,1,0,2,1> ?
 B) <2,2,2,2,2,2,2> ?

Question: What about the bottom tree layer (V
4
...V

7
)?

More Genotype Representations

● Real-valued <3.729, 0.21, 11.9…>
– Gaussian mutation

● Permutation-based
– swapping mutations

– permutation crossover

● Nonlinear
– Trees, 2D arrays, graphs

Photo credit: http://www.swissarmy.com/

http://www.swissarmy.com/

Fitness landscapes

Image credit: Susa Stonedahl (2009)

Usually very high-dimensional, not 2D.

First, a quick review...

--continuing from Friday--

Review:GA Ingredients

● an encoding for candidate solutions
● an initial population
● “fitness” function

– for phenotype selection

● genetic operators
– for genotype variation

● reproduction model
– to put it all together

Tennis Predictor Example

● Outlook = {Sunny, Overcast, Rain}
● Wind = {Weak, Strong}
● Given 100 training examples like:

– Sunny, Strong, YES

– Rain, Weak, NO

● Should you play tennis?
● How can we design a GA to learn the

PlaysTennis concept?

Representing simple rules

 _ _ _ _ _ _ _
 Outlook Wind PlaysTennis

● If (Outlook=X or Y or Z) AND Wind=(A or B)
Then PlaysTennis = YES or NO.

● Outlook = {Sunny, Overcast, Rainy}

● Wind = {Weak, Strong}

● Classification: PlaysTennis = {YES, NO}

● What does 011 01 01 mean?

● What does 100 11 10 mean?

● What does 000 00 00 mean?

Review: GA Ingredients

● an encoding for candidate solutions
● an initial population
● “fitness” function

– for phenotype selection

● genetic operators
– for genotype variation

● reproduction model
– to put it all together

DONE

Random bit strings will do.
Try PopSize=200...

Discuss!

Fitness & Selection

● One possibility:
– Fitness F = % correct on training set

● Select who will reproduce using:
– Tournament selection

● Look at 3 random individuals and
select the best.

Genetic Operators

● 2-point crossover

0110101 (don't play in non-sunny strong wind)

1001110 (do play when sunny, in any wind)

0111101 (don't play when non-sunny in any wind)

1000110 (do play in sunny strong wind)

● Per-bit mutation, perhaps rate = 1%

– 1% chance of flipping each bit in the
children.

Parents

Children

Review: GA Ingredients

● an encoding for candidate solutions
● an initial population
● “fitness” function

– for phenotype selection

● genetic operators
– for genotype variation

● reproduction model
– to put it all together

DONE

Random bit strings will do.

F = training set score.
Tournament selection.

2-pt crossover
& mutation

Generational

Review: GA schematic

● Start with random population
● Loop until “good enough” solution found

– Evaluate fitness on each individual

– Choose parents from this population,
preferentially selecting “fitter” ones

– Create children from the chosen parents
● Using sexual & asexual reproduction,

and some amount of mutation

– Replace (at least part of) the old
population with these children

A leading question...

If genetic algorithms are “evolving” solutions,
that sounds really flexible...

Are there any optimization problems that
GAs aren't good at solving?

“No Free Lunch” Theorem

● All search algorithms are biased.

– If they perform better on one
function, it is at the cost of
performing worse on another.

● No search algorithm is any better
than random search, across the
set of all fitness functions.

● (I'm glossing over details...)

Image credit: http://www.townofrosendale.com/images/lunch_sign.jpg

NFL due to:
Wolpert &
Macready

(1997)

http://www.townofrosendale.com/images/lunch_sign.jpg

Before applying a GA?

● Is there a domain-specific approach
you could try?

– GA is a “black box” optimizer

– Can incorporate domain-specific
operators into the GA as well...

● Do greedy/local algorithms fail?
– Do they get stuck on local optima?

● Think hard about search space
representation!

Thoughts on using GAs

● The chromosomal representation
should encourage recombination of
useful “building blocks.” Can the
solution be built from subcomponents?

● The fitness function must provide
sufficient search gradient.
(Won't find a “needle in a haystack”.)

● Biological evolution is not really an
“optimization” process. Rather, it is a
complex adaptive system. This can
also be helpful for thinking about GAs.

GAs and speed

● GAs are often slow
– (in their defense,

 the problems
are often pretty
challenging.)

● One response: parallelization
– island-migration models (“demes”)

– fine-grained parallelization

Photo credit: public domain

“Evolutionary Computation”

● GAs fall into a larger family of
evolutionary algorithms, including

– Genetic Programming

– Evolutionary Strategies

– Evolutionary Programming

– EDAs, DE, GE, Harmony Search...

● Artificial life (“Alife”)
– Simulating (or creating?) virtual life

Coming up!

GA Demo

1st place prize
“Art of Evolution” Exhibit

February 12, 2009

(Switch Slides)

to Genetic Programming

A few fun topics

Photo credit: public domain

Interactive GAs

● Require human interaction & feedback
for the fitness function

● Can be used to evolve art, music...
● Example: online banner ads

– Try different combinations of fonts,
background/foreground colors,
sizes, accompanying photos, etc.

Example artwork created by an IGA. Image credit: kandid.sourceforge.net

Coevolution

● Consider two populations, each
evaluating fitness based on the other

Example:
● 1 population of parallel

 sorting networks
● 1 population of

“input sequences”

This figure courtesy of:
Hillis, W.D. (1990)
“Coevolving parasites...”

Learning Classifier Systems

● evolve a population of rules
– rules can trigger other rules based on

message passing

● the whole population = the classifier
● use “credit assignment” to reward

useful rules with good fitness

● (combines GAs with reinforcement
learning)

In conclusion...

● GAs are fun...
– So you should do your homework!

● Evolutionary algorithms can evolve
creative and unexpected solutions to
difficult problems.

● But you only get intelligence out, if you
put some intelligence in!

– well-designed problem representation

– fitness function

– appropriate parameter settings

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

