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Time-space diagrams for uniform 1-D CAs, solving the density classification problem 
where 18 of the 30 cells start in the ON state.  Each of these is a best-of-generation 
ruleset from the final generation of a GA run.  They each converge to a state of all ON, 
which is correct since the original density was greater than 0.5.

Motivation
 

To what extent is diversity beneficial when solving a problem? Increasing the diversity of 
problem solving strategies has two effects: (1) it allows for more complex solutions, and 
(2) it increases the size of the search space. Given limited computational power, there is 
a trade-off between these effects.  Diverse strategies working together may be able to 
solve more challenging problems than a single strategy, but evolving strategies that can 
communicate with each other is often difficult.  We investigate this trade-off in the density 
classification (DC) problem in cellular automata (CA). We formalize the concept of 
diversity as the number of rules in a non-uniform CA (NuCA).
 

In contrast to prior work with GAs on the DC problem [1,2,3], our goal was not to 
discover high performance solutions, but rather to explore how different levels of 
diversity  (numbers of rules) affect the quality of rules that the GA discovers.
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Conclusion
 

Given a fixed amount of computational power, finding an optimal balance between 
diverse and simple representations is difficult.  It is tempting to use more complex 
representations and larger search spaces, since it is likely that a better solution exists in 
the larger space.  Even if better solutions exist, they may not be easy to find.  In the 
NuCA domain, the expanded search spaces are generally supersets of the smaller 
spaces – e.g. a radius 3 solution using 6 rules can exhibit the same behavior as any 
radius 2 solution using one rule.  However, when search time is limited, the richness of 
the space affects performance the most. This richness is in part determined by how 
often diverse strategies cooperate or interfere with each other.  There may still be better 
solutions to the DC problem using diverse sets of rules.  However, because of the size 
and sparseness of the search space, the cost of finding rules that work together 
outweighed the marginal benefit from increased expressivity.
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Method
 

We used a simple GA with one-point crossover, per bit mutation, full population 
replacement, and tournament selection of size 3. We evolved a population of 100 
individuals, where individuals are sets of CA rules, for 200 generations. We measured 
fitness by running each NuCA ruleset with 100 initial conditions (ICs) generated with the 
density of 1’s chosen randomly from [0.0, 1.0], and counting the ICs the ruleset correctly 
solved (converged to the appropriate state). Our lattice was only 30 cells wide due to 
time/computational constraints.  In our experiments we varied the number of rules used 
in the NuCA between 1 and 6 (omitting 4, which does not tile evenly).  Rules were placed 
in a cyclic order across the lattice (as show below).  We also varied the CA radius from  
1 to 3.   We used NetLogo [4] to build our model and collect experimental results.
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Time-space diagrams for 1-D NuCAs with 6 different rules, which are placed cyclically 
across the lattice.  The different hues show where different rules were placed, while 
lightness/darkness represents the ON/OFF states of the lattice cells.  All three start with 
18 cells ON out of 30.  The radius=1 and radius=2 examples correctly converge to the 
appropriate state in the time allotted, while the radius=3 example fails to converge.  Each 
of these is a best-of-generation ruleset from the final generation of a GA run.

Results
 

The three graphs at right show the fitness of the 
best rulesets found in each generation, given 
different amounts of diversity (numbers of rules 
in the NuCA).  A simple ruleset which changes 
every cell to ON (or OFF), regardless of the 
previous state of the lattice, would achieve a 
fitness score of 50%.  The best rulesets found 
for radius=1 only marginally improve on this 
strategy.  The best performance was found for 
radius=2, with either 1 or 2 rules.  Each data 
point represents the average across 15 runs, 
with standard error shown with error bars.

Notice that for radius=2 and radius=3, fitness is 
still increasing after 200 generations. Will the 
the more diverse cases eventually outperform 
the uniform case?  This would make a good 
area for future research.  Our current work is 
based on the premise that a very limited 
amount of computation time is available.
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The above graph summarizes the results of our experiments, by showing more 
explicitly the relationship between performance and diversity.  For radius=1, the 
search space is small and impoverished – there are a mere 256 choices for a single 
rule.  A slight improvement is found by using two rules working together, but this 
improvement does not continue for larger numbers of rules.  For radius=2, the best 
solutions evolve using 1 or 2 rules, and performance degrades slowly for more rules.  
At radius=3 the search spaces are much larger, and the GA has increasing difficulty 
finding good solutions when the amount of diversity is increased.


